Verification of numerical models – what are the biggest challenges?

OZEWEX 2014, 28-29 OCTOBER 2014, CANBERRA

Australian Government

Bureau of Meteorology

The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology

Validation and Verification

Does my model do the right thing?

Process studies Field experiments Special observations

Did my model get the right answer?

Systematic verification Diagnostic verification Routine observations

Trends in numerical prediction

Higher resolution

• Focus on surface weather

Coupled extended range

• Focus on longer range

Ensembles

• Focus on uncertainty

Impact models

• Focus on user decisions

High resolution NWP

Benefits

- Surface weather
- Greater realism
- Extreme values

Verification challenges

- Observations
- Double penalty
- Rare extreme values

Verifying rare extreme values

- Hard to observe
- Categorical scores more robust
 - Metrics should reward hits, penalise misses and false alarms
 - For rare events, usual summary scores (e.g., CSI, ETS, HSS, ...) \rightarrow 0
 - New extremal dependence scores:

$$EDI = \frac{\log F - \log H}{\log F + \log H} \qquad SEDI = \frac{\log F - \log H - \log(1 - F) + \log(1 - H)}{\log F + \log H + \log(1 - F) + \log(1 - H)}$$

Ferro & Stephenson, Weather and Forecasting, 2011

Spatial verification methods

Scaledependent error

Phase and amplitude errors

Gilleland et al., Bulletin of the American Meteorological Society, 2010

Neighbourhood verification

- Don't require an *exact* match between forecasts and observations
 - Unpredictable scales
 - Uncertainty in observations

Look in a space / time neighborhood around the point of interest

Evaluate using categorical, continuous, probabilistic scores / methods

Feature-based verification

Compare attributes:

- centroid location
- intensity distribution
- area
- orientation
- etc.

When objects not matched:

- false alarms
- missed events
- rain volume
- etc.

Method for Object-based Diagnostic Evaluation (MODE)

StageII

WRF

24h forecast of 1h rainfall on 1 June 2005

Spatial Verification Methods Intercomparison

Category	Scales with skill	Location errors	Intensity errors	Structure errors	Occurrence (hits, misses, false alarms)
Traditional (gridpoint)	×	×	\checkmark	×	\checkmark
Neighbourhood	\checkmark	×	\checkmark	×	\checkmark
Scale separation	\checkmark	×	\checkmark	×	\checkmark
Features based	×	\checkmark	\checkmark	\checkmark	\checkmark
Deformation	×	\checkmark	\checkmark	×	×

• Conclusions from 1st phase

- Different methods have different strengths
- All address bias
- 2nd phase
 - Wind and precipitation in complex terrain
 - Ensemble forecasts
 - Point observations, ensemble observations

Neighbourhood ensemble verification

Feature-based ensemble verification

Possible strategies for verifying an ensemble of "objects"

- 1. Verify objects in probability maps
- 2. Verify "ensemble mean"
- 3. Verify distributions of object properties

Interacting weather & climate processes

Moncrieff et al., WMO Bulletin, 2007

Seamless prediction: How to verify across time scales?

Generalized Discrimination Score (GDS)

Two-alternative forced choice:

13 Mason & Weigel, *Monthly Weather Review*, 2009

Multi-temporal verification

- Compute skill for a large range of lead times.
- As lead time is increased, also increase the time-averaging window for a seamless transition from weather to climate.

DJF

Transpose AMIP

Run climate models in NWP mode

• Verification against observations \rightarrow evaluation of processes

Weather modelling \rightarrow impact modelling

Flight time error (FTE) = flight_time_{obs} - flight_time_{fcst}

- Accurate measure of wind forecast accuracy directly relevant to airlines
- Calculated using the track that the aircraft actually took
- Uses AMDAR observations from real flights rather than model analyses or radiosondes

Uncertainty in observations

- As models improve, we can no longer ignore observation error!
- Remove observation bias errors where possible
- Effects of random obs error on verification
 - "Noise" leads to poorer scores for deterministic forecasts
 - Ensemble forecasts have poorer reliability & ROC
- What can we do?
 - Error bars in scatter plots
 - · Quantitative reference to "gold standard"
 - Correct for systematic error in observations
 - RMSE Ciach & Krajewski (Adv. Water Res., 1999)
 - Categorical scores Briggs et al. (MWR, 2005), Bowler (MWR, 2006)
 - Multiple observation sources / analysis methods

Verification against own model analyses

• Pros

- Convenient
 - · Available in-house
 - Matched grid
- Spatially complete

 Temp and diff averaged from 2008020100 to 2008043000

 (a) Center Mean, 500mb
 (b) NCEP-Mean, 500mb

Cons

- Analysis contains bias
 - Inherited from model first guess
 - Different satellite processing
 - Different observations assimilated
 - Poor models of error covariance
- → Misleading model skill

-1 -0.8 -0.6 -0.4 -0.2 -0.1 D.1 D.2 D.4 D.6 D.8 1

(e) CMC-Mean, 500mb

(f) FNO-Mean, 500mb

Wei et al., AMOJ, 2010

Observations quantity and quality

Verification in "obs" space

- Satellite
 - A-Train
 - Himawari-8/9
 - GPM
 - etc.
- Radar
 - National & int'l networks
 - Polarimetric & phased array
- GPS
- 3rd party data
 - Mobile phone technology
- Multi-sensor analyses

Model reflectivity

Obs reflectivity Melick *et al.*, *NWA*, 2012

Progress and challenges in model verification

- Spatial verification becoming mainstream
- New scores for extreme events
- Evaluating ensembles
- Verification across time scales
- Relevant metrics for weather impacts
- Observation quality/quantity
- Verification and data assimilation

Thank you!

More slides

Fractions skill score

Compare forecast fractions with observed fractions (radar) *probabilistically* over different sized neighbourhoods

All FC+6, all UTC, 1 mm/h

Roberts & Lean, Monthly Weather Review, 2008

Spread and skill for location forecasts

Spread = average distance to ensemble median location

Skill = distance between ensemble median and observed location

Contiguous rain areas with max rain ≥ 20 mm d⁻¹ Warm season, southern Australia

Mean values for 112 events

Ebert, IVMW4, 2009

Uncertainty in reference data

