

## Making the Most of Ground Based Meteorological Network Using Anomaly Based Interpolation

Michael Hutchinson, Jennifer Kesteven, Tingbao Xu

Australian National University

OzEWEX October 2014

## Contents

- Anomaly based interpolation well established
- Background fields for standard period (1976-2005) can be interpolated from all available data – incorporating fine scale topographic controls to significantly extend the supporting data network
- Effects of proximity to the coast on temperature can be optimised
- New anomaly process for daily and monthly rainfall
- Robustly determined broad scale anomalies for all variables error detection and correction – improved prediction accuracy – additional predictors
- Assessment of network quality



High resolution climate interpolation methodology has been developed for wide applications including

Ongoing support of FullCAM for Department of Environment

eMAST TERN facility –

ENABLE benchmarking, evaluation, optimization of ecosystem models SUPPORT ecosystem science, impact assessment and management

Bureau of Meteorology, Environment Canada

Many others





### Flowchart for ANUSPLIN Version 4.4



## ANUClimate data sets (1 km resolution)

|                      | Tmin         | Tmax         | Vap<br>Press | Precip       | Pan<br>Evap  | Wet<br>days  | Solar<br>Rad | Model<br>Runoff |
|----------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------------|
| daily<br>1970-2011   | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |              |              |              |                 |
| monthly<br>1970-2011 | $\checkmark$    |
| monthly<br>mean      | $\checkmark$ | $\checkmark$ |              | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |                 |



#### Temporal Coverage of Daily Maximum Temperature Data





#### Temporal Coverage of Rainfall and Pan Evaporation Data





# Standardisation of short period maximum temperature records to 1976-2005 means

 $N_o$  = number of years observed

 $N_{oo}$  = number of years observed between 1976 and 2005

 $N_r$  = number of years estimated by regression with a long term station

 $N = N_{oo} + N_r \qquad (N_{oo} \text{ can be } 0)$ 

Error variance =  $f(N_r).var_r + (1 - N/30).var$ 

N<sub>o</sub> at least 5 R at least 0.55

N at least 20 Error standard deviation less than 0.4°C

# Standardisation of maximum temperature short period records to standard1976-2005 means









Distance based coastal proximity – max temp - wind

Proportion of area coastal proximity – min temp – local convection



### Optimisation of coastal proximity parameters



# Impact of coastal proximity – sharper coastal transition with impact on broader scale patterns



### Impact of coastal proximity – February mean maximum temp – alters directions of spatial gradients in northern data sparse areas



# February 1977 anomaly and actual maximum temperature



### Cross validation errors for monthly and daily Maxt and Mint over Australia 1970 - 2012



Mean monthly RMS CV errors Maxt 0.50 °C Mint 0.73 °C

Mean daily RMS CV errors

Maxt 1.0 °C Mint 1.5 °C

### Censored power of normal distribution

Rain<sup>a</sup> =  $\mu$  +  $\sigma z$ 

a 0.3 – 0.9

z standard normal variable, z ≥ - $\mu/\sigma$  $\mu/\sigma$  -3.0 to 2.0 P(W) =  $\Phi(\mu/\sigma)$  Parameterisation of square root daily rainfall – basis for anomaly interpolation

Two parameters – calibrated monthly:

```
Mean daily rainfall = f(\mu/\sigma).\sigma^2
(\sigma ranges from 5 to 6)
```

```
P(W) = \Phi(\mu/\sigma)
(\mu/\sigma ranges from -3.0 to 2.0)
```

#### Mean daily rain mm/day 1976-2005 January, July

![](_page_17_Picture_1.jpeg)

#### $\Phi^{-1}$ (Wet day probability) = $\mu/\sigma$ 1976-2005 January, July

![](_page_17_Figure_3.jpeg)

## Defining the anomalies

• For positive rainfall – the z value of the underlying normal distribution -  $z = (Rain^{a} - \mu)/\sigma$ 

 For zero rainfall – invent a latent negative anomaly by placing the normalised value "mid-way" in the zero (dry day) probability region

### February 1977 anomaly and actual monthly rainfall – strong east coast gradients due to topographic control of background field

Monthly anomaly

Actual monthly rainfall

![](_page_19_Figure_3.jpeg)

### Cross validation errors for rainfall and pan evaporation over Australia 1970 - 2012

![](_page_20_Figure_1.jpeg)

Daily rainfall MA CV errors and daily occurrence class average

Rainfall 50%

Occurrence CA 90%

Monthly MA CV errors

Rainfall 18%

Pan Evap 10%

# Robust rejection of erroneous daily rainfall anomalies

| 094129 | 1970 01 | 147.300 | -43  | .033 | 73   |      |      |      |      |       |       |       |      |
|--------|---------|---------|------|------|------|------|------|------|------|-------|-------|-------|------|
| 0.00   | 75.90   | 5.80    | 2.00 | 5.30 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 11.70 | 6.90  | 0.00  | 0.00 |
| 0.00   | 1.09    | 63.47   | 6.67 | 4.75 | 4.17 | 1.51 | 0.00 | 0.00 | 0.00 | 0.00  | 11.07 | 11.78 | 0.95 |
| 0.02   | 0.31    | 70.34   | 7.11 | 4.67 | 4.50 | 1.51 | 0.00 | 0.00 | 0.00 | 0.00  | 11.33 | 12.43 | 1.02 |
|        |         |         |      |      |      |      |      |      |      |       |       |       |      |
| 094130 | 1970 01 | 147.551 | -42  | .747 | 51   |      |      |      |      |       |       |       |      |
| 0.00   | 2.00    | 41.40   | 5.10 | 4.10 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00  | 15.20 | 14.00 | 3.60 |
| 0.00   | 1.04    | 51.31   | 3.99 | 8.26 | 1.19 | 1.12 | 0.00 | 0.00 | 0.00 | 0.00  | 9.38  | 17.35 | 4.35 |
| 0.00   | 0.90    | 52.91   | 3.80 | 9.01 | 1.15 | 0.89 | 0.00 | 0.00 | 0.00 | 0.00  | 8.79  | 17.77 | 4.42 |

Daily rainfall station Data values 1-14 January 1970 Fitted values Cross validated values Typical daily rainfall errors: Wrong day of recording (as above) Unrecognised accumulated values Missing value recorded as zero

# Error detection based on large studentised residuals - range of probability levels

| Variable                | Number of detections |
|-------------------------|----------------------|
| Daily rainfall          | 5 per day            |
| Daily max temperature   | 5 per day            |
| Daily min temperature   | 5 per day            |
| Monthly rainfall        | 16 per month (0.2%)  |
| Monthly max temperature | 2 per month          |
| Monthly min temperature | 2 per month          |
| Monthly pan evap        | 0.5 per month        |

## Conclusion

- Anomaly based interpolation provides a robust and accurate, process-based, spatial analysis of daily and monthly climate data
- New version of ANUSPLIN provides systematic implementation addresses
   substantial housekeeping issues
- Studentised residuals provide an automated method for error detection close inspection of data shows it to be reliable potential for further application
- New anomaly process for daily and monthly rainfall offers potential for incorporation of additional remotely sensed predictors
- Cross validation errors provide an assessment of ground network quality confirmed improvement in quality of Bureau of Meteorology ground data since the late 1990s
- Potential for wide application in ecosystem assessment and modelling and impact assessment