Not an Average Visualisation Project

J. W. Larson¹ P. R. Briggs²

¹Mathematical Sciences Institute, The Australian National University

²CSIRO Marine and Atmospheric Research

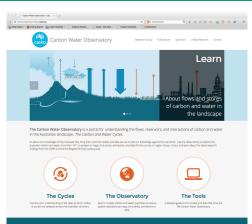
29 October 2014

during the next frantic twenty minutes...

outline

- Australian Carbon Water Observatory—The kind of dataset we should be developing
 - Surface Carbon and Water budgets
 - Relationship to Australian Water Availability Project (AWAP)
- Building the elements of the Observatory-just the visualisation part
 - File and data handling, a.k.a. "Data Janitor Work"
 - Production of literally millions of images using high performance computing.
 - Relationship to Another Big Problem: Data Science
- Mining variability information from ACWO data
 - Background: Time-dependent Probability Density Functions
- Summary

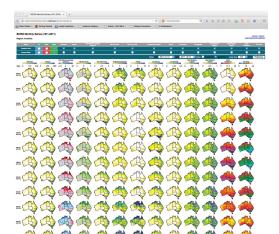
australian carbon water observatory



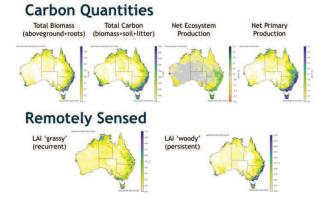
Learn Explore Understand Disclaimer Terms of Use

e Australian Carbon Water Observatory - CSIRD @2013

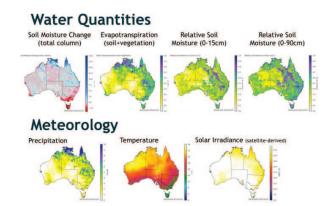
australian carbon water observatory (national scale)



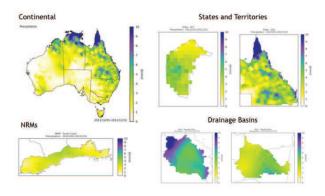
australian carbon water observatory-carbon



australian carbon water observatory water and meteorology

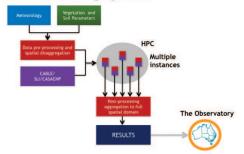


australian carbon water observatory— ...at multiple scales...



australian carbon water observatory-how

BIOS2 Modelling System



data janitor by day...

superhero by night...

- Massive visualisation project utilising Python's rich ecosystem
- Run on HPC platforms with MPI parallelism
- Data format, grid, file naming conventions compatible with AWAP
- There's a lot more we can do with these

& HOME	Q. SEARCH	The New York Times

For Big-Data Scientists, 'Janitor Work' Is Key Hurdle to Insights

SUBSCRIBE NOW

By STEVE LOHR AUG. 17, 2014

TECHNOLOGY

Monica Rogati, Jawbone's vice president for data science, with Brian Wilt, a senior data scientist. Peter DaSDva for The New York Times

Technology revolutions come in measured, sometimes foot-dragging steps. The lab science

time-dependent probability density functions (tdpdfs)

what is it, and how do I make one?

- **Given:** A meteorological timeseries *X*(*t*) and some sampling interval [*t*₀, *t*₀ + *W*)
 - Sample spans a total of Y years
 - W is the sampling window width—assume a square window
 - Quantities t_0 , W measured in years; Pick W by convention
- Slide a window of width *W* = 30 years through the data, displacing it one year at a time
- Estimate the climate PDF for every unique 30-year window, assigning the year of the window's center as the "time" for that climate PDF
- **Result:** $\rho(X, t)$ is a collection of Y 30 "time slice" PDFs

•
$$\rho(X,t) \geq 0, \quad \forall X,t$$

• For fixed
$$t = t_p$$
, $\int_{-\infty}^{\infty} \rho(X, t_p) dX = 1$.

pdfs and information theory

shannon entropy H

$$H(X) = \int_{-\infty}^{\infty} \rho(X) \log \rho(X) dX$$

- H(X), quantifies the amount of "surprise" present in X.
- Logarithm base defines units—bits for base 2, nats for base e

kullback-leibler divergence $D_{KL}(\rho || \psi)$

Given a second density function $\psi(X)$ that models $\rho(X)$,

$$D_{KL}(\rho||\psi) = \int_{-\infty}^{\infty} \rho(X) \log\left(\frac{\rho(X)}{\psi(X)}\right) dX$$

• Also called the *KL Gain*, because it's how much additional information, given $\psi(X)$, is required to describe $\rho(X)$

tdpdfs, information theory, and variability

applications

- Time-dependent probability density functions
 - At-a-glance time history of the density, potentially revealling interannual-scale to interdecadal-scale structure
- Kullback-Leibler Divergences
 - Marginal informativeness of extending climate sampling intervals; i.e. adding a year to a sampling window
 - (Un-) Representativeness of a subset of the climate record when used to model the full record
 - (Un-) Representativeness of the full climate record when used to model a subset of it
 - Interdecadal variability /non-stationarity of the density function

case study: central england temperatures

the longest weather station-based observational record

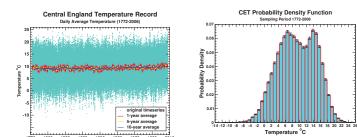
Surface air temperature computed from three stations representative of Central England

- Manley's Monthly Average record runs 1659–present, Parker et al. have computed Daily Averages (1772–present) and Extrema (1878–present)
 - Precision of 0.1° C for 1722–present, 0.5° C before that
- The daily and monthly CET data are known to have these properties:
 - Oscillatory behavior on multiple scales up to century and beyond
 - Long-term warming trend
 - Also urbanization-related warming, but this is corrected

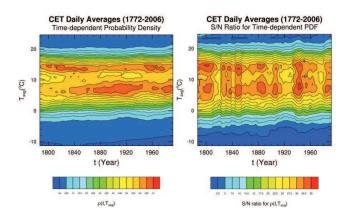
central england temperatures

pdf estimation method

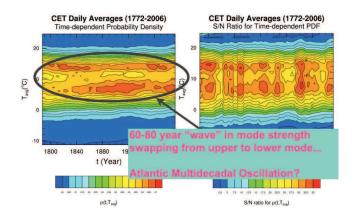
- Piecewise-cosntant PDF estimated using Bayesian-based optimal binning (Knuth, 2005)
 - Produces a number of uniform bins that is the most honest reflection of the sample



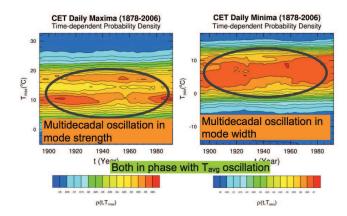
time-dependent pdf for cet daily T_{AVG}



time-dependent pdf for cet daily T_{AVG}



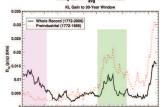
time-dependent pdf for cet daily T_{MIN} and $\overline{T_{MAX}}$



cet—representativeness of long or window records (or lack thereof)

the kld quantifies differences between pdfs

- Comparison of 30-windowed PDFs with
 - The Preindustrial Era
 - The Full daily CET Record
- The lower the value of the KLD, the better the agreement

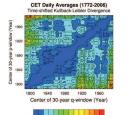


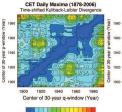
Daily CET Tava 1772-2006

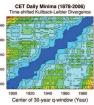
cet—long-term variability

the kld quantifies differences between 30-year window pdfs

- Plots show the relative lack of skill for a PDF constructed from a window centered on the ordinate value for modelling the PDF constructed from a sample centered on the the abcissa value
- The lower the value of the KLD, the better the agreement





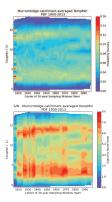


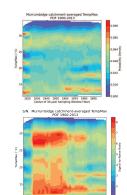
case study: multivariate variability estimation for awap

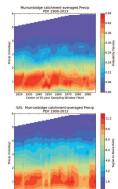
sample data

- Data taken from AWAP Historical Run 26j
- Timeseries of catchment area-averaged variables for the Murrumbidgee Catchment (1900-2014)
 - Meteorological drivers: minimum/maximum temperature and precipitation— (T_{min}, T_{max}, Pr)
 - AWAP outputs
 - Upper (W_{Rel1}: 0–0.2m) and lower (W_{Rel2}: 0.2–1.5 m) layer soil moisture
 - Total evapotranspiration: $F_{WE} = F_{WTra} + F_{Wsoil}$
 - Total discharge: F_{WDis} = F_{WRun} + F_{WLch2}

awap 26j tdpdfs-meteorological drivers

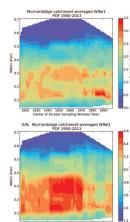


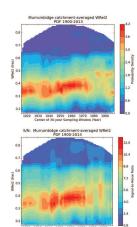




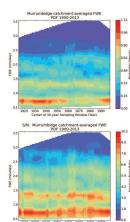
1920 1930 1940 1950 1960 1970 1980 1990 Center of 30-year Sampling Window (Year)

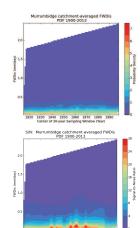
awap 26j tdpdfs—soil moisture



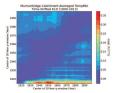


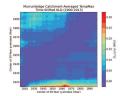
awap 26j tdpdfs-evapotranspiration and drainage

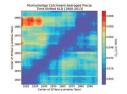




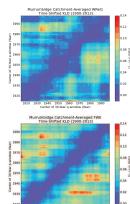
awap 26j long-term variability-meteorological drivers

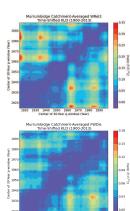






awap 26j long-term variability evapotranspiration and drainage





discussion

kind of a mixed bag

- The technique does reveal some interesting things
 - Picks up the 1900-1910 climatology in the meteorological drivers
- Disappointments include
 - Low signal-to-noise ratios in the time-dependent PDFs
 - Ambiguity in signals / absence of pronounced structure in the time-dependent PDFs
- Much of the disappointment is likely a function of catchment-scale averaging of the timeseries.

summary

conclusions

- We have built a carbon water observatory for Australia with rich graphical content
 - Millions of monthly average images across continental, state, catchment and natural resource management regional scales
- We have presented a preliminary example of the kind of deep, multivariate, spatiotemporal analysis that is now possible

future work

- Complete rollout of images and animations
- Make data and open-source software tools available
- Pursue this relatively shallow "deep" analysis more deeply
 - Gridpoint timeseries sampling
 - Spatial maps of interdecadal Kullback-Leibler Divergences