

Australian Government

Geoscience Australia

Using a calibrated archive of satellite imagery to map continental surface water dynamics at 25 metre resolution

Leo Lymburner, Norman Mueller, Steven Ring, Alexis McIntyre, Fuqin Li, Medhavy Thankappan, Adam Lewis

APPLYING GEOSCIENCE TO AUSTRALIA'S MOST IMPORTANT CHALLENGES

Steps required to shift from instrument level data to information about surface water dynamics

- Convert from satellite data to surface reflectance
- Flag non-surface artifacts
- Apply consistent classification algorithm to every observation
- Summarise results

Satellite measurements and the models we apply to them

Satellites measure the amount of photons radiating from the top of the atmosphere

To convert this into comparable measurements of the Earth's surface (specifically surface reflectance) we apply physics based models of:

- Sensor characteristics
- Radiative transfer through the atmosphere
- Sun-sensor geometry

From 'top of atmosphere' to surface reflectance

Satellites measure the radiation from the top of the atmosphere

This needs conversion to surface reflectance

- Removes the effect of the atmosphere
 - Dust, haze, water vapour
- Removes the effect of sun-sensor-target geometry
 - Time-of-year (solar angle)
 - Satellite location (relative to target and sun

NBAR correction

N = Nadir view (viewed from above)

B = Bidirectional Reflectance Distribution Function (sun sensor geometry)

A = Atmospheric Correction (smoke, haze, water vapour)

R = Reflectance (what you get once you've corrected the other influences)

NBAR corrected archives

Need to ensure that data from sensors have been converted into comparable units

- MODIS
- Landsat TM, ETM+, OLI
- ASTER
- Future sensors such as Sentinel II and III

NBAR Correction Algorithm

GEOSCIENCE AUSTRALIA

Validating the NBAR Correction Algorithm

GEOSCIENCE AUSTRALIA

© Commonwealth of Australia (Geoscience Australia) 2014

GEOSCIENCE AUSTRALIA

© Commonwealth of Australia (Geoscience Australia) 2014

Pixel Quality Layer

				Cumulative
	Test	Bit	Value	Sum
	Saturation band 1	0	1	1
	Saturation band 2	1	2	3
	Saturation band 3	2	4	7
	Saturation band 4	3	8	15
	Saturation band 5	4	16	31
	Saturation band 61*	5	32	63
	Saturation band 62*	6	64	127
	Saturation band 7	7	128	255
	Contiguity	8	256	511
	Land/Sea	9	512	1023
	ACCA	10	1024	2047
P1 (and/or) P4 Strumpton	Fmask	11	2048	4095
	Cloud Shadow (ACCA)	12	4096	8191
	Cloud Shadow			
	(Fmask)	13	8192	16383
	Topographic Shadow **	14	16384	32767
	To be determined **	15	32786	65535

Fmask – Zhu and Woodcock, 2012 ACCA – Irish et al, 2006

GEOSCIENCE AUSTRALIA

Australian Government

Geoscience Australia

Australian Geoscience Data Cube

A Collaboration between Geoscience Australia, CSIRO and NCI

APPLYING GEOSCIENCE TO AUSTRALIA'S MOST IMPORTANT CHALLENGES

Current Tile Contents (for Landsat 5 &7)

Level 1 Topographic (ORTHO)

1. LS5-B60 – Thermal Infrared

or

- 1. LS7-B61 Thermal Infrared Low Gain
- 2. LS7-B62 Thermal Infrared High Gain

(Byte datatype)

ARG-25 (NBAR)

- 1. LS5/7-B10 Visible Blue
- 2. LS5/7-B20 Visible Green
- 3. LS5/7-B30 Visible Red
- 4. LS5/7-B40 Near Infrared
- 5. LS5/7-B50 Middle Infrared 1
- LS5/7-B70 Middle Infrared 2 (Int16 Datatype)

Pixel Quality (PQA)*

 PQ – Bit-array of PQ tests (UInt16 Datatype)

Fractional Cover (FC)**

- 1. Photosynthetic Veg. (PV)
- 2. Non-Photosynthetic Veg. (NPV)
- 3. Bare Soil (BS)
- 4. Un-mixing Error (UE)

(Int16 Datatype)

Digital Surface Model (DSM)***

- 1. Elevation
- 2. Slope
- 3. Aspect
- (Float32 Datatype)

* PQA Geoscience Australia

** QDERM, Currently only a 3x2 path/row test area of FC data held in AG-DC. Planned to complete load by end June 2014

*** Single, static source dataset, i.e. not time varying. Resampled from 1" DSM. Licensed for Government Use Only

Current AG-DC Holdings

© Commonwealth of Australia (Geoscience Australia) 2014

Quality Assured Observations

Legend

GEOSCIENCE AUSTRALIA

Menindee Lakes 1998-2012 (Water Management)

GEOSCIENCE AUSTRALIA

Wednesday Seminar 30/10/13

From surface reflectance to 'Water Observations from Space'

Training data (4 million data points)

Every surface observations (21x10¹² pixels)

GEOSCIENCE AUSTRALIA

GEOSCIENCE AUSTRALIA

© Commonwealth of Australia (Geoscience Australia) 2014

WOfS Summary Product

- Sum the derived temporal water stack: number of water observations per pixel
- Sum the derived "real" observations for every pixel from the Pixel Quality
- Produce the ratio as a percentage for display

Menindee Lakes as shown in WOfS, with associated legend

Confidence filters

Confidence by comparing classification output with other relevant datasets using logistic regression:

- MODIS Open Water Likelihood
- Multi-resolution Valley-Bottom-Flatness
- Slope of terrain from SRTM
- Built-up areas
- Frequency of water observation from WOfS

National scale Water Observations from Space

NFRIP water detection

- 15 Years of data from LS5 & LS7(1998-2012)
- 25m Nominal Pixel Resolution
- Approx. 133,000 individual source scenes in approx. 12,400 passes
- Entire archive of 1,312,087 NBAR tiles => 21x10¹² pixels visited
- <u>WOfS WMS</u>

GEOSCIENCE AUSTRALIA

Insert slideshow title here <insert/header&footer/footer>

			WOfS class = water		WOfS class = not water	
WOf	S class	Spectral sub-class	Water %	Number of samples	Not Water %	Number of samples
Not		Bare	0%	2	100%	756,974
Not	water	Building Shadow	6%	198	94%	2.903
						_,
Not	water	CloudShadow_Bare	6%	4,167	94%	67,852
Not		CloudShadow_Veg	2%	3,033	98%	134,788
Not	water	Cropping Bare	0%	-	100%	60.210
						;
Not v	water	Cropping_DenseVeg	0%	-	100%	34,762
Not v	water	Dark_Soil	0%	36	100%	17,450
Not v	water	Road	1%	60	99%	5,337
Not	water	Salt	1%	1,023	99%	93,141
Not	water	Snow	0%	113	100%	93.695
						;
Not v	water	TerrainShadow_Bare	11%	44,492	89%	352,121
Not v		TerrainShadow_Snow	1%	64	99%	7,659
Not v	water	TerrainShadow_Veg	4%	3,161	96%	74,022
Not	water	V_Forest	0%	24	100%	285,875
Not	water	V_Grassland	0%	28	100%	594,384
Not	water	V_Riparian	0%	184	100%	61,587
			000/	4 070	40/	
Wate	er er	W Estuary	99% 95%	1,676	1%	3.850
Wate		W_LargeBody	0.8%	12/ 826	2%	3 057
Wate		W_River	90 <i>%</i>	46,778	20%	11,651
Wate		W SalineFlats	92%	404	8%	33
Wate		W Salt Lake	0.00%	13 982	10/	130
Wate			9970	000.070	170	5.000
wate		vv_Sea	98%	339,876	2%	5,932
Wate	er er	W_SmallBody	88% 63%	12,266	12%	1,730
Wate		W_Swamp W_VegMix	74%	34 636	26%	12 060
Prod	ucers acci	uracy	1170	93%	2070	98%
User	s Accurac	у		92%		98%
Over	all accura	CV	97%			

GEOSCIENCE AUS

91%

der&footer/footer>

Australian Government

Geoscience Australia

Phone: +61 2 6249 9111

Web: www.ga.gov.au

Email: feedback@ga.gov.au

Address: Cnr Jerrabomberra Avenue and Hindmarsh Drive, Symonston ACT 2609 Postal Address: GPO Box 378, Canberra ACT 2601