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Mechanics of Streamflow Modeling
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Background Prediction Errors
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• Suppose we have properly calibrated the model with 
carefully collected observations 
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Background Prediction Errors
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Room for Improvement?
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Model state and forcing update by DA
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• This is not a perfect rationale because errors in input 
forcing and structure would be transferred to the 
‘parameters’ 

• Data assimilation presumes sound model structure and 
internal processes (sensitivity between updated states 
and model outputs)
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Background Prediction Errors



Two Examples

• Ovens Catchment - 
(relatively) data rich site 

• Warrego Catchment - 
data sparse semi-arid site
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Ovens Catchment

• GR4H over lumped Ovens catchment 
• Average of [NSEraw flow, NSElog flow, NSEBox-Cox flow, Kling 

Gupta efficiency,  bias skill score] in 1999-2004 for 
objective function 

• Stream discharge was assimilated using EnKF and 
EnKS 

• Maximum a posteriori (MAP) scheme for rainfall 
(multiplicative Gaussian) and soil moisture (additive 
Gaussian) error parameter calibration 

• Observed stream discharge error derived from 
flowmeter vs. water-level-based discharge data
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Schematics of EnKF/EnKS
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Observed Q

state updating

• EnKF - real-time updater 
• EnKS - allows for time lag 

between Q and S



Ovens Catchment - Lumped
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Evaluation - 2005~2010

2010



Ovens Catchment - Lumped
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Ovens Catchment - Lumped
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Ovens Catchment - Semi-distributed
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Ovens Catchment - Semi-distributed
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• EnKS-1: corrects GR4H states only 
• EnKS-2: corrects GR4H states + routing states



Ovens Catchment - Semi-distributed
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• Limited skills for correcting internal (upstream) discharge



Ovens Catchment - Semi-distributed
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• Continuous ranked probability score (CRPS) at 
upstream gauge locations worse after streamflow 
assimilation



Ovens Catchment - Semi-distributed
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• Continuous ranked probability score (CRPS) at 
upstream gauge locations worse after streamflow 
assimilation



Summary of Ovens Case

• When real-time discharge is assimilated, both EnKF and 
EnKS improve the forecast accuracy (e.g., MRMSE and 
NS) by large margin (which decreases with lead time) 

• With NWP forecast rainfall, overall forecast accuracy 
decreases but improvement in MRMSE remains consistent 

• Semi-distributed configuration reduces openloop forecast 
accuracy (~40% reduction of MRMSE) 

• No significant difference between lumped and semi-
distributed setups after discharge assimilation 

• Forecast reliability in upstream gauge locations drops after 
discharge assimilation
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Warrego Catchment

• Chosen assuming no current 
gauging (no discharge to be 
assimilated) 

• Daily AWAP was used as input to 
PDM 

• We may have to rely on remotely 
sensed forcing input (e.g., satellite 
rainfall data) when AWAP accuracy 
is not guaranteed
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AWAP vs TRMM 3B42RT
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TRMM 3B42RT V7

AWAP Operational
API Model Proxy SM AMSR-E SM



Assimilation of Microwave SM
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Dual Data Assimilation
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• AMSR-E, SMOS, and ASCAT soil moisture products 
bias-corrected by triple collocation (TC) or lagged-
variable (LV) scheme 

• Seasonally varying observation error specification 
(byproduct of TC/LV) 

• Maximum a posteriori (MAP) to calibrate model 
perturbation parameters (rainfall and soil moisture) 

• Ensemble perturbation bias correction 
• Soil water index (SWI) calculated by exponential filter 

was also tried (no statistically significant difference)
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Assimilation of Microwave SM
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Assimilation of Microwave SM
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Assimilation of Microwave SM
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Output example: semi-distributed, outlet gauge



Assimilation of Microwave SM
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outlet gauge upstream gauge



Summary of Warrego Case

• In case real-time discharge observation is not available, 
satellite soil moisture can reduce streamflow prediction error 
with limited skills (compared to the discharge assimilation) 

• Soil moisture assimilation requires very careful handling of 
biases, model perturbation and observation error 
specification 

• SM DA works better with semi-distributed setup 
• Over some part of the country, satellite rainfall shows 

comparable skills to AWAP (will get better with GMP and other 
rainfall products) 

• Having a small number of rain gauges makes a big difference 
in ungauged regions
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Some Thoughts

• Marginal improvements made by ‘signature information’ 
are often expensive (start with realistic expectation) 

• Real-time integration of observations presumes sound 
model structure and proper calibration (it will NOT free 
you from calibration!) 

• Mind biases between measurements from difference 
sources 

• Ground and satellite measurements are 
“complementing”, not “competing” (increasing 
satellites does not mean we need fewer ground 
measurements)
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